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Angular transport in a nonperiodic Chirikov-Taylor map

D. Lesnik and K. H. Spatschek
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Transport in angular direction is considered for a nonperiodic Chirikov-Taylor~standard! map. In the limit
of large stochasticity parameter, depending on the boundary conditions of the action variable, either superdif-
fusive of diffusive behavior is found. In both cases characteristic oscillations in the transport coefficients occur.
Theoretical predictions based on the Perron-Frobenius evolution operator formalism for the distribution func-
tion are compared with numerical simulations. Information on the anomalous behaviors in the near threshold
as well as in the subthreshold regions are also presented.
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I. INTRODUCTION

The Chirikov-Taylor map@1#, also called standard map,
a single parameter nonlinear twist map that describes
local behavior of nonintegrable dynamical systems in
separatrix region of nonlinear resonances@1–5#. It has be-
come a paradigm for investigating the properties of cha
dynamics in Hamiltonian systems.

In the past many authors investigated the transport in c
otic systems on the basis of the standard map. In the lim
large stochasticity parameterK, the standard map exhibits
diffusive behaviorin the action variablep, with a quasioscil-
lating diffusion constantDp as a function ofK. The latter
was first numerically discovered by Chirikov@1#. Rechester
and White @6# and Rechesteret al. @7# used a probalistic
method for the solution of the Vlasov equation and show
that the behavior of test particles becomes diffusive~in p)
for very large stochasticity parameters. Their calculation o
turbulent diffusion coefficient was refined by, e.g., Hasega
and Saphir@8,9#. Balescu and co-workers@10,11# used a con-
tinuous time random walk model for subcritical values of t
stochasticity parameter, finding subdiffusive motion in th
parameter region. Benkaddaet al. @12# found superdiffusive
transport caused by accelerator islands. The anomalous
ponents were related to the characteristic temporal and
tial scaling parameters of the island chain. Whiteet al. @13#
investigated anomalous transport near threshold. Very l
flights and a large anomaly in the transport were shown to
associated with multiisland structures causing orbit sticki
Khodas and Fishman@14# and Khodaset al. @15# used the
Frobenius-Perron operator formalism for the kicked rot
which can be considered as the continuous analog of
discrete standard map, in order to calculate relaxation
diffusion in the presence of noise. Be´nisti and Escande@16#
showed that the diffusion properties of the standard map
nonuniversal in the framework of the wave-particle intera
tion.

The standard map may be written in action-angle va
ablesp andu,

p85p2
K

2p
sin 2pu, ~1!
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u85u1p8, ~2!

whereK is the stochasticity~control! parameter and

0<u,1, 2`,p,`. ~3!

Because of the obvious translation symmetry it is con
nient to study the topological properties of the phase pl
with boundary conditions on the torus, e.g.,

0<u,1, 20.5<p,0.5. ~4!

The topologies of the Poincare´ plots for sets of numerically
iterated trajectories depend on the stochasticity parameteK.
A threshold valueKc exists. ForK values aroundKc charac-
teristic peculiarities such as stochastic sea, island cha
KAM surfaces, etc., can be clearly seen.

Another choice of boundary conditions~4! originates
from the specific applications one has in mind. For examp
in plasma physics, the model was extensively used in or
to understand generic behavior of field line and orbit dyna
ics in partially chaotic as well as completely chaotic ma
netic systems. Then, for tokamak applications, in the tw
dimensional dynamical systemp can be considered as th
‘‘radial’’ coordinate whereasu denotes the poloidal angl
coordinate~measured in radians divided by 2p!. All values
are then taken at discrete ‘‘times’’n, which correspond to
values of the toroidal angle. The latter is assumed as non
riodic while the poloidal angle is periodic, as denoted abo
@6,7,11#. We should note that in the area of stochastic m
netic field line transport, later some more sophisticated m
els than the standard map have been used@10,17–19#.

However, other boundary conditions are also in u
When considering the kicked rotator on the torus@14,15#,
one takesu as 1 periodic andp ass periodic, wheres is an
integer.

In numerous publications on transport in the stand
map, the considerations concern only the transport inp di-
rection. However, this map being asymmetric, it is of inter
to consider both directions,p and u, in transport computa-
tions @12#. In some physical applications one needs the an
evolution.
©2001 The American Physical Society05-1
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In this paper we investigate the cases of infinite ph
space for bothu andp in more detail. To be more specific
we apply two types of boundary conditions,

case A: 2`,u,`, 2`,p,`, ~5!

case B: 2`,u,`, 20.5<p,0.5; ~6!

thus in case B we usep modulo 1.
In the following we shall use Eqs.~1! and ~2! together

with the just-mentioned restrictions A or B, respectively.
For largeK and in a first approximation, the action diffu

sion coefficientDp of Eqs.~1!–~3! can be estimated as

Dp'
K2

4
@122J2~K !#, ~7!

whereJ2 is the Bessel function of the first kind~and second
order!. However, for some values ofK the system exhibits a
much more complicated dynamics. The presence of ‘‘s
vived’’ islands, surrounding stable periodical points, mak
the phase space, in contrast to ‘‘pure stochastic’’ system
mixture of regular and chaotic components. The stickin
property leads to strong deviations from the diffusive la
This phenomenon is called anomalous transport. In its l
time asymptoticsn→`, the stochastic system can be cha
acterized by the transport exponentsmp ~for motion in p
direction! andmu ~for motion inu direction! that are defined
through

^~Dp!2&;nmp, ^~Du!2&;nmu, ~8!

respectively. Following the usual notation, the transport
gime can be characterized as

m51, diffusive,

m,1, subdiffusive,

m.1, superdiffusive.

It was shown that at some values ofK the islands have
strong effects on transport. For example, the two caseK
near the thresholdKc'0.971 and K near Kn52pn,
n51,2, . . . ,respectively, were considered. In the latter ca
relatively large accelerator mode islands lead to ‘‘peaks’’
the transport exponent.

The object of our interest is the transport in theangular
direction for both cases A and B, i.e., to find, if they exi
corresponding expressions forDu . The present investigation
deals with the asymptotic behaviors of the system asK→`
andK→0, respectively. Divergences, arising from accele
tor mode stable points and other types of stable period
points will also be discussed.

Let us briefly mention some expected differences betw
transport inp andu directions, respectively.

First a summary of thep transport. ForK,Kc , transport
barriers inp direction exist in the form of KAM surfaces
Just above the thresholdKc , the system exhibits a very com
plicated phase space topology. The multiisland structure
the phase plane causes orbit sticking, which leads to cha
05620
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in transport rate. The cross section of a capture to the st
part of the phase space has a very sensitive dependenceK.
By investigations similar to those of Whiteet al. @13# one
might show a strange~subdiffusive! behavior with strongly
varying exponents near threshold. ForK@Kc , as the struc-
tures by islands vanish, the transport inp becomes diffusive.
The leading order of expression~7! immediately follows
from

^~Dp!2&;
~K/2p!2

4
2n;

1

2p2
Dpn, ~9!

whereDp5pn2p0. Here,^•••& means averaging over dif
ferent initial conditions.

Now the different expectations for the~mostly unknown!
situation of transport inu direction. Even forK,Kc we
expect a~strong! superdiffusive transport. This expectation
motivated by the following thought experiment. LetK50
and initial conditions being distributed onp axis as
n(p)d(u). After n iterations the latter becomesn(p)d(u
2np). Thus, the mean square displacement shows the
lowing behavior:

^~Du!2&5E E u2n~p!d~u2np!dp du

5E ~np!2n~p!dp;n2. ~10!

Near the thresholdKc we also expect a strange behavio
Extrapolating from the derived variations of the expone
for case B@13#, we expect that for the latter case andK
@Kc the transport may be diffusive. In case A, on the oth
hand, the transport may be much faster, e.g.,Du;Dpn2 ~see
below!.

The paper is organized as follows. To analyze the ang
transport, here we apply a procedure based on the Frobe
Perron operator. In Sec. II, we briefly outline the metho
Section III is devoted to the behavior in the limitK→0. The
opposite limitK→` is considered in two sections. First, w
treat case A in Sec. IV. The case B is evaluated in Sec
The paper is concluded by a short summary and discuss

II. OUTLINE OF THE METHOD

In this section we summarize the definitions and formu
of the Frobenius-Perron operator formalism that are nec
sary for an understanding of the main results of the pres
paper. For reasons of simplicity, we choose here case A
demonstration.

Let us characterize the state of the system by a distr
tion function f (p,u). Provided the latter is known at ‘‘time’’
n, the state of the system at ‘‘time’’n11 then follows from
the equations of motion. Contrary to ‘‘ordinary’’ statistica
mechanics, in the dynamical systems based on maps
introduces discrete ‘‘times’’n. The evolution in ‘‘time’’ of
the distribution function will be represented via th
Frobenius-Perron operator@9#.

For the distribution function, an ensemble of orbits, ea
5-2
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ANGULAR TRANSPORT IN A NONPERIODIC . . . PHYSICAL REVIEW E 64 056205
governed by the standard map, is considered. The the
defined ~coarse-grained! distribution function should be
smooth and integrable in the limit of an infinite ensemb
Although in the case of weak chaos, KAM surfaces prev
orbits from reaching arbitrary values ofp, it is assumed tha
f 5 f (p,u;n) is defined in the whole phase plane (u,p).

The local densityn(u;n) is introduced as the average
f (p,u;n) over the action variablep,

n~u;n!5E
2`

`

dp f~p,u;n!. ~11!

Next, we switch to the Fourier-transform inu andp; we use
the definition

f̃ ~q,m;n!5E
2`

`

dpE
2`

`

du exp@22p i ~pq1um!# f ~p,u;n!.

~12!

Here,q andm as well asq8 andm8 are continuous variable
since we definep andu on the whole plane.

The Fourier transformation of the density is related to
q50 mode of the Fourier-transformation off (p,u;n),

ñ~m;n!5 f̃ ~q50,m;n!. ~13!

In the statistical theory of transport, the diffusion coefficie
is related to the time-dependent mean-square-displace
~MSD!. The latter we define via

Su
2~n!5E

2`

`

duu2n~u;n!; ~14!

Su
2 tends to^(Du)2& for n→`.
A simple calculation leads to

d2ñ~m;n!

dm2 U
m50

524p2Su
2~n!. ~15!

Thus, only an infinitely small region ofñ(m;n) nearm50
determines the MSD@providedñ(m;n) is an analytic func-
tion#. Obviously, this means that for long times only th
lowest m modes of the distribution function determine th
MSD.

It is natural to define therunning diffusion coefficient
Du5Du(n) as a time derivative of the displacementSu

2(n),
i.e.,

Du52p2
]Su

2

]n
52

1

2

]

]n

d2ñ~m;n!

dm2 U
m50

. ~16!

The evolution of the distribution function can be calc
lated by the action of an evolution operatorÛ, called the
Frobenius-Perron operator,

f ~p8,u8;n!5 f ~p,u,n21!5Û f ~p8,u8;n21!. ~17!

Because of the explicit inversion formulas
05620
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p5p81
K

2p
sin 2p~u82p8!, ~18!

u5u82p8, ~19!

for the standard map, the Frobenius-Perron operator ca
expressed explicitly as the simple finite displacement ope
tor

Û5expS 2p
]

]u DexpS K

2p
sin 2pu

]

]pD . ~20!

In the Fourier representation, the operatorÛ has the matrix
elements

^q,muÛuq8,m8&5E
2`

`

dpE
2`

`

du exp@22p i ~pq1um!#

3Û exp@2p i ~pq81um8!#. ~21!

Using these matrix elements, the evolution of the dis
bution function in Fourier space becomes

f̃ ~q,m;n!5E
2`

`

dq8E
2`

`

dm8^q,muÛuq8,m8&

3 f̃ ~q8,m8;n21!. ~22!

It is an important fact of the standard map that the ma
elements of the Frobenius-Perron operator can be calcul
analytically. Using the well-known identity with Besse
functionsJl ~first kind, l th order!

exp~ iz sinw!5 (
l 52`

`

eil wJl~z!, ~23!

one obtains

^q,muÛuq8,m8&5Jm2m8~q8K !d~q1m2q8!

3 )
l 50,61, . . .

d~m2m82 l !. ~24!

Although m and m8 are continuous, the differencem
2m8 remains integer. This reflects the fact, that t
Frobenius-Perron operator is invariant under translat
transformationsũ5u1n,nPZ.

Making use of the explicit form~24!, integration overq8
andm8 can be replaced by summation in following way:

E E dq8dm8d~q1m2q8! )
l 50,61, . . .

d~m2m82 l !•••

→(
l

dq8,q1mdm8,m2 l•••.

Thus, we can write
5-3
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D. LESNIK AND K. H. SPATSCHEK PHYSICAL REVIEW E64 056205
f̃ ~q,m;n!5 (
l 50,61, . . .

Jl~q8K ! f̃ ~q85q1m,m85m

2 l ;n21!. ~25!

The solution of the initial value problem in Fourier spa
follows as

f̃ ~q,m;n!5E dq8E dm8^q,muÛnuq8,m8& f̃ ~q8,m8;0!.

~26!

In a similar manner as above, one can write the Four
transformation of the density as

ñ~m;n!5E dq8E dm8^q50,muÛnuq8,m8& f̃ ~q8,m8;0!.

~27!

One can show

^0,muÛnuq8,m8&

5E dq1•••E dmn21

3^0,muÛuq1 ,m1&•••^qn21 ,mn21uÛuq8,m8&.

~28!

Introducing new summation indiceski5mi2m,i 51, . . . ,n
21 and keeping in mind an integration overq8 andm8, the
propagator finally becomes

^q,muP̂Ûnuq8,m8&

5 (
k1 ,k2 , . . . ,kn21

Jk02k1
~mK!Jk12k2

@~2m1k1!K#

3•••Jkn212kn
@~nm1k11k21•••1kn21!K#

3dm8,kn2mdq8,nm1k11k21•••1kn21
, ~29!

where the ki ,i 50, . . . ,n, are integers withk050, kn

5m82m.
If we do not specifyq8 andm8, i.e., the matrix element

then each stringk1 , . . . ,kn determines to which matrix ele
ment the corresponding term in the sum~29! contributes. On
the other hand, for a given matrix element the two conditio
q85nm1k11•••1kn21 andkn5m82m must hold.

Equation~29! is an exact result that provides the starti
point for an asymptotic analysis.

III. ASYMPTOTIC ANALYSIS FOR K\0

We shall show now how forK,Kc the transport behavio
in u direction can be obtained from the propagator~29! in the
limit K→0. In Appendix A we present another~simpler!
derivation based on the solution of the continuous system
a kicked rotor that corresponds to the discrete standard m

The propagator~29! consists of a product of Bessel fun
tions. All the argumentsqiK are small in the limitK→0.
05620
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We, therefore, expand the Bessel functions in the form

Jn~x!5xnF 1

2nG~n11!
2

x2

2n12G~n12!
1O~x4!G .

~30!

It is easy to see that the main contribution in the sum~29!
originates from the term with

k15k25¯5kn215kn50. ~31!

In the caseK50 this is the only nonvanishing term. It is o
zeroth order inK; terms with any other choice ofki contain
higher orders ofK.

Thus, in zeroth order we have

^q,muP̂Ûnuq8,m8&51 ~32!

for q85nm, and m85m. The solution of the equation o
motion ~27! becomes

ñ~m;n!5 f̃ ~nm,m;0!. ~33!

This is exactly what we get in a corresponding continuo
time system forK50 ~see Appendix A!. Thus, the regime a
K→0 is superdiffusive with respect to angular transport, a
the diffusion coefficient is

Du5const n, ~34!

where const depends on the initial distribution@see Eq.
~A9!#. This is obvious from the physical point of view. A
K50 the ‘‘orbits’’ do not change their momentap at all. So
the rate of transport depends only on how the orbits are
tially distributed inp.

It should be emphasized that the predicted valuemu52
~for K!Kc) holds for both cases A and B.

IV. ASYMPTOTIC ANALYSIS IN THE LIMIT K\`

FOR CASE A

Here, our aim is to find a diffusion coefficient in the lim
K→`. Given the solutionñ(m;n), we have to differentiate
it twice atm50. As was already mentioned, the behavior
ñ(m;n) only in a small region near 0 is of interest. Althoug
we consider largeK, for any fixedK the limit m→0 can be
applied. Thus, in the following two assumptions are cruc
First, we assume a large stochasticity parameter, i.e.,

K@1. ~35!

But second, we can assume sufficiently smallm, i.e.,

mK!1. ~36!

A. Lowest order in 1ÕAK

There are two types of arguments in the Bessel functi
of the propagator~29!: small ones, if they are likeimK, and
large ones, if they are like (im1 j )K, wherei , j are integers.
5-4
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Apart from that, we note that for diagonal elements only
terms being proportional tom2 give a nontrivial contribution
to the MSD@see Eq.~15!#.

For large arguments we use the expansion

Jn~x!5A 2

pxFcosS x2
pn

2
2

p

4 D1OS 1

xD G . ~37!

We shall expand the propagator in a power series of
small parameters,A1/K andmK, respectively.

Since we consider the case A~which has been outlined in
Sec. II! we can immediately proceed with the expressio
derived in Sec. II. Again, the dominant term in the sum~29!
is that one corresponding to

k15k25•••5kn215kn50. ~38!

We shall designate it byS0. Expanding the Bessel function
up to the second order inmK, we find

S05J0~mK!J0~2mK!•••J0~nmK!

'S 121
m2K2

4 D S 1222
m2K2

4 D •••S 12n2
m2K2

4 D .

~39!

Up to the second order this product leads to

S0'12
m2K2

4 (
i 51

n

i 2512S n

6
1

n2

2
1

n3

3 Dm2K2

4
. ~40!

In the next step we consider the transition to large ‘‘time
~the limit n→` should be taken for fixedK),

S0'2
n3

3

m2K2

4
. ~41!

This contribution belongs to the matrix element^q
50,muÛnuq8,m8& with q85nm; m85m. The next terms we
consider will contain the additional small factorJ2(K)
;A1/K. We designate these terms as

Si : k15•••5ki 2150, ki51, ki 11521,

ki 125•••5kn2150;

S2 i : k15•••5ki 2150, ki521, ki 1151,

ki 125•••5kn2150;

for i 51,2,. . . ,n22.
In dominant order,Si can be estimated as

Si5 i ~ i 12!
m2K2

4
J2~K !, ~42!

and we haveS2 i5Si . Since all these terms contribute to th
same matrix element, we can add them together, with
result
05620
e
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i 51

n22

~Si1S2 i !52
n3

3

m2K2

4
J2~K !. ~43!

Here the summation formula

(
i 51

n22

i ~ i 12!512
5n

6
2

n2

2
1

n3

3
→ n3

3
, for n→`,

~44!

was used. Combining withS0, we finally get for the matrix
element

^q,muP̂Ûnunm,m&52
n3

3
„122J2~K !…

m2K2

4
. ~45!

We note that foru transport asymptotically the propagat
has off-diagonal elements, and itcannot be represented in
the form

^q,muP̂Ûnuq8,m8&;d~q82q!d~m82m!, ~46!

as it was in the case for ‘‘action’’ diffusion.
The propagator~45! delivers the explicit solution of the

equation of motion~27!,

ñ~m;n!52
n3

3
„122J2~K !…

m2K2

4
f̃ ~nm,m;0!. ~47!

Now, combining Eqs.~15! and~16!, the running diffusion
coefficient can be estimated as

Du'
K2

4
„122J2~K !…n2'

K2

4 S 11A 8

pK
cosFK2

p

4 G D n2.

~48!

In case A theu transport is superdiffusive and the runnin
diffusion coefficient is proportional ton2.

Figure 1 shows a comparison of the analytical predict

FIG. 1. Normalized diffusion coefficientDu vs control param-
eter K for caseA (2`,p,1`). The dots~connected by lines!
represent the measurements from numerical simulations while
solid curve shows the theoretical prediction.
5-5
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with numerical simulations. Clearly, the oscillations withK
can be seen inDu /n2. The diffusion coefficient in angle
variable is related to that in action variable~7! via

Du5Dpn2. ~49!

In Appendix B we present simple arguments to explain w
that should be the case.

B. Influence of accelerator mode islands

The present analysis does not apply to the regions w
periodical points. We mention in that respect the so-ca
accelerator modes, which play a special role in diffus
problems. Divergences in theD(K) dependence can be ob
served. They are related to ‘‘accelerated’’ islands, consis
of elliptic orbits surrounding an accelerator mode fixed po
@3#.

For a period-1 accelerator mode point (p0 ,u0) @period 1
means that in a ‘‘moduled’’ map it would be a period-1 fixe
point# we have the condition

2
K

2p
sin 2pu05N, NPZ; ~50!

the starting momentump0 has to be integer, say 0. The a
tion p, starting in this point, increases at each step byN, and
u grow asn2,

pn5p01nN5nN, ~51!

un5u01p11•••1pn→
n2

2
N. ~52!

Therefore, the mean square displacement inu direction in-
creases asn4. For the transport exponents one gets in th
accelerated regions of phase spacemp52, mu54. The rela-
tion mu5mp12, discussed in Appendix B, is therefore al
valid here. Even when only a few orbits are located in
accelerator mode island, their contribution to the MSD b
comes dominant asn→`.

A linear stability analysis of the accelerator mode islan
shows the stability windows

1

4
2

1

p2N
,u0,

1

4
, ~53!

K5
2pN

sin 2pu0
. ~54!

The reason why the accelerator mode contributions w
not evident in the propagator expansion is the following. T
Fourier modes have been calculated to the lowest order
respect to the small parameterA1/K . Contributions of accel-
erator modes are of higher order inA1/K, but contain an
additional factorn. That is why they become dominant a
n→`.

Although the stability windows for the accelerator islan
are very narrow, there exist stable accelerator mode isla
of higher periods. Their existence would lead to the conc
05620
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sion that divergence should take place for most~probably for
all! values ofK. In transport simulations that is not observe
As far as we deal with a finite number of orbits, there is
finite probability that an arbitrary orbit can be found in on
of the accelerator mode islands. The probability is prop
tional to the areas occupied by the latter. In turn, these a
~similar to areas of any structures in phase plane! tend to
zero as the stochasticity parameter increases. In order to
serve the corresponding divergences in computer sim
tions, either a huge number of orbits with random init
conditions must be taken, or one has to choose some~quite
specific! initial conditions on the islands.

To avoid the divergence difficulty, a collision term cou
be added to the Liouville equation, describing a phase fl
of a continuous-time system@6,15# ~see Appendix A!:

d f

dt
5

] f

]t
1$H, f %5

a2

2

]2f

]u2
, ~55!

wherea2 characterizes the diffusion process. The latter le
to an additional factor exp„2(a2/2)m2

… in the propagator
~24!. As a consequence, the propagator does not lead
more to matrix elements with rapid time growth rates cau
by accelerator mode~quasi-!periodical orbits. After perform-
ing the calculations with diffusion, the limit of vanishin
noise (a→0) can be taken.

V. ASYMPTOTIC ANALYSIS IN THE LIMIT K\`

FOR CASE B

We now consider the dynamics with periodicity inp, i.e.,
20.5<p,0.5, 2`,u,`. In order to apply the
Frobenius-Perron operator formalism, which essentia
needs the explicit inversion of the map, let us introduce

@p#ªp mod 1, ~56!

where the operation ‘‘mod’’ forcesp to the interval
@20.5,0.5@ . Now we can introduce the new map

p85p2
K

2p
sin 2pu, ~57!

u85u1@p8#, ~58!

which has the same angular dynamics as Eqs.~1! and ~2!
have for20.5<p,0.5, 2`,u,`. Modifying the previ-
ous calculations, we get for the Fourier representation
Frobenius-Perron operator

^q,muÛuq8,m8&5Jm2m8~q8K !E
2`

`

dp

3exp„2p i $~q82q2m1m8!p2m8@p#%…

3 )
l 50,61, . . .

d~m2m82 l !. ~59!

The function@p# can be written as a Fourier series,
5-6
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@p#5 (
k51

`
~21!k11

pk
sin 2pkp. ~60!

Using this and the summation formula~23!, the one-step
propagator̂ q,muÛuq8,m8& becomes

^q,muÛuq8,m8&5 (
k1 ,k2 , . . .

Jm2m8~q8K !Jk1S 2m8

1 D
3Jk2S 2m8

2 D ••• )
l 50,61, . . .

d~m2m82 l !

3d~q82q2m1m82k112k223k3

1••• !, ~61!
e
’

05620
where the summation indiceski are integers. Next, we mul
tiply the propagatorn times to obtain then-step propagator

^q,muP̂Ûnuq8,m8&

5E dq1•••E dmn21

3^0,muÛuq1 ,m1&•••^qn21 ,mn21uÛuq8,m8&.

~62!

Again, we have convolutions over all intermediate indic
q1 ,m1 , . . . ,qn21 ,mn21. To be more specific, introducing
l 15m2m1 ,l 25m12m2 , . . . , and using upper indices
1,2, . . . ,n to distinguish the contributions from the variou
factors, one finds explicitly
^q,muP̂Ûnuq8,m8&5 (
l 1,k1

1 ,k2
1 , . . .

(
l 2,k1

2 ,k2
2 , . . .

. . . (
l n,k1

n ,k2
n , . . .

Jl 1~Kq1!Jk
1
1S 2m1

1 D Jk
2
1S 2m1

2 D Jk
3
1S 2m1

3 D •••
3Jl 2~Kq2!Jk

1
2S 2m2

1 D Jk
2
2S 2m2

2 D Jk
3
2S 2m2

3 D •••
A

3Jl n~Kqn!Jk
1
nS 2mn

1 D Jk
2
nS 2mn

2 D Jk
3
nS 2mn

3 D •••dq8,qn
dm8,mn

, ~63!
a-
ion
where

qn5(
i 51

n

~ l i1k1
i 22k2

i 13k3
i 2••• !,

mn5m2(
i 51

n

l i ,

n51, . . . ,n. ~64!

We consider now the limitK→`. We start with the ze-
roth order terms~in A1/K) in a power series expansion of th
propagator. The lowest order follows from the ‘‘trivial’
choice of all coefficients

l i5kj
i 50; i 51,2, . . . ,n; j 51,2, . . . . ~65!

Then we getqn50, mn5m, for all n ~the dominant matrix
element is that withq850, m85m), and

^q,muP̂Ûnuq8,m8&'^0,muÛnu0,m&

'J0S 2m

1 D J0S 2m

2 D J0S 2m

3 D •••
3J0S 2m

1 D J0S 2m

2 D J0S 2m

3 D •••
A

3J0S 2m

1 D J0S 2m

2 D J0S 2m

3 D •••.

~66!

Expanding the Bessel functions,

J0~m!'12
m2

4
, ~67!

we get for each row

J0S 2m

1 D J0S 2m

2 D J0S 2m

3 D •••'12m2(
i 51

`
1

i 2
512

p2

6
m2.

~68!

In this way, the propagator becomes, in zeroth order,

^q,muP̂Ûnuq8,m8&'F12
p2

6
m2Gn

'12
p2

6
m2n, ~69!

with q850; m85m. Note that the main part of the propag
tor is diagonal. Then the equation of motion has the solut
5-7
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ñ~m;n!5S 12
p2

6
m2n D ñ~m;0!. ~70!

Taking the derivative ofñ(m;n) twice with respect tom we
get the MSD

Su
252

1

4p2

]2ñ

]m2U
m50

5
1

12
n. ~71!

~We have omitted a constant term, corresponding to the
tial distribution!.

Next we consider the first nontrivial choice of coef
cients. Let

l i50, k1
151, k1

2521, k1
iÞ1,250. ~72!

Note that for this choiceq151; qiÞ150. In the correspond-
ing contributions to the sum~63! ~we designate it byS1) all
but three Bessel functions contribute~in lowest order! with
the factor 1. The three principal factors are that contain
k1

1, k1
2, andq1. From here it follows

S1'J0~K !J1~2m!J21~2m!'2J0~K !m2. ~73!

The further procedure is analogous to that in the previ
Sec. IV. For allSi we get the same result, i.e.,S1. Summing
all the termsSi ~remember that all of them belong to th
same matrix element withq850, m85m), we get

(
i 51

n22

~Si1S2 i !'2nS1'22J0~K !m2n. ~74!

This is the first order term in the expansion of the propa
tor. Combining it with the zeroth order term, we can write
more precise equation of motion,

ñ~m;n!'S 12
p2

6
m2n22J0~K !m2n D ñ~m;0!, ~75!

from which ~asn→`)

Su
25S 1

12
1

1

p2
J0~K !D n, ~76!

Du52p2
]Su

2

]n
5

p2

6
12J0~K ! ~77!

follows. ExpandingJ0(K) for large arguments leads to

Du5
p2

6
1A 8

pK
cosS K2

p

4 D . ~78!

In Fig. 2 we compare this analytical result with numeric
simulations. The agreement is excellent.

We conclude this section by some heuristic argume
why for the ~in p) modulated map diffusion inu should
occur. We base the consideration on the assumption tha
largeK anypi can be treated as an arbitrary function ofu i 21.
In other words, we assume the existence of a station
05620
i-

g

s

-

l

t,

for

ry

action-density profile@nst(p)5^ f (p,u)&u ,(d/dt)nst50#. pi
is just a random number, distributed in the interv
@20.5,0.5# . Let nst have the first and second moments^p&
50 and s2, respectively. Providedp is distributed uni-
formly, then the second moment iss25 1

12 .
A displacement of a given orbit at timen is

Dun5un2u05(
i 51

n

pi'un . ~79!

According to the central limit theoremun should be distrib-
uted as

P~un!5
1

s̃nA2p
expS 2

un
2

2s̃n
2D , ~80!

where s̃n5sAn. From this distribution function the MSD
can be easily obtained as

Su
25E

2`

`

un
2P~un!dun5s2n. ~81!

For a uniform p distribution ~approached in the limitK
→`) the MSD becomes

Su
25

1

12
n. ~82!

So, we have a pure diffusive process in agreement with
previous formula. In general, the diffusion rate depends
the p distribution.

Comparing Eq.~81! with Eq. ~76! we conclude that the
second moment of the stationary distributionnst(p), i.e., the
MSD of action, is an in fact slightly oscillating function o
K: s25 1

12 1(1/p2)J0(K).

FIG. 2. Diffusion coefficientDu vs control parameterK for case
B (20.5<p,10.5). The dots~connected by lines! represent the
measurements from numerical simulations while the solid cu
shows the theoretical prediction.
5-8
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VI. SUMMARY AND DISCUSSION

In this paper we have investigated the angular transpo
a nonperiodic Chirikov-Taylor Map. The results for the a
tion transport, i.e., diffusive behavior in the limit of larg
stochasticity parametersK and transport barriers forK
,Kc , are well-known. In the case of angular transport
have superdiffusive behavior forK→0. The transport prop-
erties for largeK (K→`) depend on the boundary cond
tions on the action variablep. For an unrestrictedp region
~case A!, the transport is superdiffusive with a transport e
ponentmu53 andDu.n2Dp . This theoretically predicted
behavior is in complete agreement with numerical simu
tions, as shown in Fig. 3. On the other hand, for a periodp
behavior, theu transport becomes diffusive, and the diff
sion coefficient has been derived. Again, as shown in Fig
the agreement with numerical simulations is excellent. T
all analytical predictions are confirmed by numerical simu
tions. Figures 3 and 4 also contain the results forp diffusion.

FIG. 3. Exponentsmu andmp vs K for caseA (2`,p,1`).
Note that Su;nmu and Sp;nmp. The dots~connected by lines!
represent the measurements from numerical simulations.

FIG. 4. Same as Fig. 3 but for caseB (20.5<p,10.5). In the
latter case, obviouslymp50.
05620
in
-

-

-

4,
s
-

Figure 3 shows that in case A the accelerator modes have
same influences on both,u and p transport. On the othe
hand, in case B no divergences due to accelerator mo
occur.
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APPENDIX A: SUPERDIFFUSION FOR KÄ0

Let us consider the continuous Hamiltonian system for
‘‘kicked rotator’’

H~p,u;t !5
p2

2
1

K

4p2
cos 2pu(

n
d~ t2n!. ~A1!

The coordinatesp(t) andu(t) coincide atT5n20 with pn

andun used in the main text. Here,n stands for the iterated
times in the standard map.

In the absence of perturbation (K50) the continuous sys
tem is trivial to integrate. The kinetic equation for the dist
bution function becomes

] f

]t
1p

] f

]u
50. ~A2!

In Fourier space, the corresponding equation

] f̃

]t
2m

] f̃

]q
50 ~A3!

has the solution

f̃ ~q,m;t !5F̃~m,mt1q!, ~A4!

where F̃ is an arbitrary function that can be express
through the initial distribution,

f̃ ~q,m;0!ª f̃ 0~q,m!5F̃~m,q!. ~A5!

Thus,

f̃ ~q,m;t !5 f̃ 0~q1mt,m!, ~A6!

and for the density profile we obtain

ñ~m;t !5 f̃ ~q50,m;t !5 f̃ 0~mt,m!. ~A7!

Now Eq. ~15! can be applied to estimateSu
2 . Leaving

only the dominant term in the large-time limit, it becomes

Su
2→2

1

4p2

]2 f̃ 0~q8,m8!

]q82 U
q850
m850

t25const t2. ~A8!
5-9
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The first derivative ofSu
2 with respect to time gives the run

ning diffusion coefficient~16!, i.e.,

Du52
]2 f̃ 0~q8,m8!

]q82 U
q850
m850

t5const t. ~A9!

The regime is superdiffusive with the diffusion expone
mu52.

APPENDIX B: RELATION BETWEEN ANGLE
AND ACTION DIFFUSION

Let us start with the assumption that the transport inp
direction is diffusive. Then we introducen(p;n) as the den-
sity profile at ‘‘time’’ n. We designates(p82p) as the tran-
sition probability, i.e., the probability that a ‘‘orbit’’ with
momentump after one iteration will have momentump8. In
an ideal diffusive process,s(p) would be a Gaussian. Actu
ally, not the shape but the width ofs(p) affects the dynam-
ics. Although it is not exactly the case for the standard m
for the sake of simplicity we use

s~p!5
1

A2ps
e2p2/2s2

, s̃~q!5e22p2s2q2
. ~B1!

Here s2 is an effective one-step mean square displacem
of p. From the standard map one can see thats5A^Dp&2

5A^(K2/4p2)sin(u)2&;K/pA8. The stickiness property
leads to small~periodical! deviations from the linear depen
dences(K);K. Having a density profilen(p;n) at ‘‘time’’
n, after one iteration it becomes

n~p;n11!5E dp8n~p8;n!s~p2p8!, ~B2!

or in Fourier space

ñ~q;n11!5ñ~q;n!s̃~q!. ~B3!

Starting with an initial distributionn(p;0)5d(p), we get
after n iterations

ñ~q;n!5@ s̃~q!#n5e22p2ns2q2
. ~B4!

Thus for action diffusion, using Eq.~15!, the MSD is

Sp
25ns2, ~B5!

as was expected for diffusive regime. From here the ac
diffusion coefficient

Dp52p2s2 ~B6!

follows.
We now interpret this formula in the following way

Knowing the diffusion coefficientDp , one can estimate th
effective p displacements. The relation between the trans
ports inp and inu will be estimated from the second equ
tion of the standard map,
05620
t

,

nt

n

Du5u82u5p8. ~B7!

When an ‘‘orbit’’ starts withu050, thenn(u1 ;1)5s(u1) is
nothing else but the probability for this ‘‘orbit’’ to have th
coordinateu1 at timen51. If duringn steps the ‘‘orbit’’ had
successive momentap1 ,p2 , . . . ,pn , then its actual coordi-
nate isun5p11p21•••1pn . The amplitude of this proces
is s(p1)s(p22p1)•••s(pn2pn21). Integrating over all in-
termediate states, we get the probability for the orbit to ha
the coordinateu after n iterations,

Pn~u!5E •••E dp1•••dpn21s~p1!

3s~p22p1!•••s~pn2pn21!, ~B8!

where

p11p21•••1pn5u ~B9!

must hold.
After Fourier transform

P̃n~q!5 s̃~q!s̃~2q!••• s̃~nq!. ~B10!

Substitutings̃(q) from Eq. ~B1! and using the summation
formula

(
i 51

n

i 25
n3

3
1

n2

2
1

n

6
→ n3

3
, as n→`, ~B11!

we finally get

P̃n~q!5expS 22p2
n3

3
s2q2D5exp~22p2sn

2q2!,

~B12!

where sn
25(n3/3)s2. Here P̃n(q) can be interpreted as

Fourier transform of the angular density profile. Using E
~15! and ~16!, the MSD and the diffusion coefficient a
‘‘time’’ n are

Su
252

1

4p2

]2

]q2
P̃n~q!U

q50

5
n3

3
s2, ~B13!

Du52p2n2s2, ~B14!

respectively. Comparing Eq.~B6! with Eq. ~B14!, we con-
clude that

Du5n2Dp . ~B15!

The relationmu5mp12 for the transport exponents was a
ready found by Benkaddaet al. @12#.
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