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Angular transport in a nonperiodic Chirikov-Taylor map
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Transport in angular direction is considered for a nonperiodic Chirikov-Tagtandarg map. In the limit
of large stochasticity parameter, depending on the boundary conditions of the action variable, either superdif-
fusive of diffusive behavior is found. In both cases characteristic oscillations in the transport coefficients occur.
Theoretical predictions based on the Perron-Frobenius evolution operator formalism for the distribution func-
tion are compared with numerical simulations. Information on the anomalous behaviors in the near threshold
as well as in the subthreshold regions are also presented.
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I. INTRODUCTION 0'=6+p’, )

The Chirikov-Taylor mag1], also called standard map, is \yhereK is the stochasticitycontro) parameter and
a single parameter nonlinear twist map that describes the

local behavior of nonintegrable dynamical systems in the
separatrix region of nonlinear resonan¢és-5]. It has be-
come a paradigm for investigating the properties of chaotic
dynamics in Hamiltonian systems.

In the past many authors investigated the transport in ch
otic systems on the basis of the standard map. In the limit ofY
large stochasticity parametl; the standard map exhibits a
diffusive behavioin the action variable, with a quasioscil- 0=60<1, -0.5=p<05. (4)
lating diffusion constanD, as a function ofK. The latter
was first numerically discovered by Chirikgt]. Rechester The topologies of the Poincamots for sets of numerically
and White[6] and Rechesteet al. [7] used a probalistic iterated trajectories depend on the stochasticity pararieter
method for the solution of the Vlasov equation and showedA threshold valueK ; exists. FoiK values aroundk . charac-
that the behavior of test particles becomes diffudivep) teristic peculiarities such as stochastic sea, island chains,
for very large stochasticity parameters. Their calculation of &AM surfaces, etc., can be clearly seen.
turbulent diffusion coefficient was refined by, e.g., Hasegawa Another choice of boundary condition&) originates
and Saphif8,9]. Balescu and co-workef40,11] used a con-  from the specific applications one has in mind. For example,
tinuous time random walk model for subcritical values of thein plasma physics, the model was extensively used in order
stochasticity parameter, finding subdiffusive motion in thatto understand generic behavior of field line and orbit dynam-
parameter region. Benkad@# al. [12] found superdiffusive ics in partially chaotic as well as completely chaotic mag-
transport caused by accelerator islands. The anomalous exetic systems. Then, for tokamak applications, in the two-
ponents were related to the characteristic temporal and spdimensional dynamical system can be considered as the
tial scaling parameters of the island chain. Whateal. [13] “radial” coordinate whereasd denotes the poloidal angle
investigated anomalous transport near threshold. Very longoordinate(measured in radians divided by72. All values
flights and a large anomaly in the transport were shown to bare then taken at discrete “times¥, which correspond to
associated with multiisland structures causing orbit stickingvalues of the toroidal angle. The latter is assumed as nonpe-
Khodas and Fishmafil4] and Khodaset al. [15] used the riodic while the poloidal angle is periodic, as denoted above
Frobenius-Perron operator formalism for the kicked rotor[6,7,11. We should note that in the area of stochastic mag-
which can be considered as the continuous analog of theetic field line transport, later some more sophisticated mod-
discrete standard map, in order to calculate relaxation andls than the standard map have been (i$6¢17—19.
diffusion in the presence of noise. Esti and Escandgl6] However, other boundary conditions are also in use.
showed that the diffusion properties of the standard map ar@/hen considering the kicked rotator on the tofdg,15,
nonuniversal in the framework of the wave-particle interac-one takes§ as 1 periodic ang ass periodic, wheres is an

0=0<1l, —oo<p<oo, 3)

Because of the obvious translation symmetry it is conve-
quient to study the topological properties of the phase plane
ith boundary conditions on the torus, e.g.,

tion. integer.
The standard map may be written in action-angle vari- In numerous publications on transport in the standard
ablesp and 6, map, the considerations concern only the transpog di-

rection. However, this map being asymmetric, it is of interest
K to consider both directiong and 6, in transport computa-
p'=p— =~ sin 20, (1) t|ons[_12]. In some physical applications one needs the angle
2w evolution.
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In this paper we investigate the cases of infinite phasén transport rate. The cross section of a capture to the sticky
space for both¥ andp in more detail. To be more specific, part of the phase space has a very sensitive dependerice on

we apply two types of boundary conditions, By investigations similar to those of Whitet al. [13] one
might show a strangésubdiffusive behavior with strongly
case A —x<f<x, —o<p<x, (5 varying exponents near threshold. FoBK ., as the struc-

tures by islands vanish, the transporfilbbecomes diffusive.
The leading order of expressiofY) immediately follows
from

case B: —o< <o, —0.5=p<0.5; (6)

thus in case B we use modulo 1.

In the following we shall use Eqg€l) and (2) together 22
with the just-mentioned restrictions A or B, respectively. (Ap)2)~ (Ki2m) ZVNLD v (9)

For largeK and in a first approximation, the action diffu- 4 272 P
sion coefficientD, of Egs.(1)-(3) can be estimated as
whereAp=p,—po. Here,(---) means averaging over dif-
ferent initial conditions.

Now the different expectations for tHenostly unknown
situation of transport ind direction. Even forK <K, we
whereJ, is the Bessel function of the first kin@nd second  expect astrong superdiffusive transport. This expectation is
Ordef). However, for some values ¢f the SyStem exhibits a motivated by the fo”owing thought experiment_ LKt=0
much more complicated dynamics. The presence of “surand initial conditions being distributed op axis as
vived” islands, surrounding stable periodical points, makesn(p) 5(0). After v iterations the latter becomeas(p) (8@

the phase space, in contrast to “pure stochastic” systems, a ;). Thus, the mean square displacement shows the fol-
mixture of regular and chaotic components. The stickinesgwing behavior:

property leads to strong deviations from the diffusive law.

This phenomenon is called anomalous transport. In its long

time asymptoticsv— o, the stochastic system can be char- ((A 9)2>:f f 6°n(p) 8(6— vp)dp do
acterized by the transport exponentg (for motion in p

direction and for motion in @ direction that are defined
throughri‘ ol " = f (vp)*n(p)dp~v?. (10

KZ
Dy~ [1-235(K)], (@)

((Ap)?)~vk,  ((A6))~wH, (8)  Near the thresholk, we also expect a strange behavior.
Extrapolating from the derived variations of the exponents
for case B[13], we expect that for the latter case aKd

>K, the transport may be diffusive. In case A, on the other

respectively. Following the usual notation, the transport re
gime can be characterized as

w=1, diffusive hand, the transport may be much faster, ég;- Dpv2 (see
’ ' below).
w<1, subdiffusive, The paper is organized as follows. To analyze the angular
transport, here we apply a procedure based on the Frobenius-
u>1, superdiffusive. Perron operator. In Sec. Il, we briefly outline the method.

Section Il is devoted to the behavior in the linkit—0. The

It was shown that at some values Kfthe islands have opposite limitk — is considered in two sections. First, we
strong effects on transport. For example, the two cakes, treat case A in Sec. IV. The case B is evaluated in Sec. V.
near the thresholdK ~0.971 and K near K,=2mn,  The paper is concluded by a short summary and discussion.
n=1,2, ... respectively, were considered. In the latter case,
relatively large accelerator mode islands lead to “peaks” of
the transport exponent.

The object of our interest is the transport in twegular In this section we summarize the definitions and formulas
direction for both cases A and B, i.e., to find, if they exist, of the Frobenius-Perron operator formalism that are neces-
corresponding expressions fr,. The present investigation sary for an understanding of the main results of the present
deals with the asymptotic behaviors of the systenKas~ paper. For reasons of simplicity, we choose here case A for
andK—0, respectively. Divergences, arising from accelera-demonstration.
tor mode stable points and other types of stable periodical Let us characterize the state of the system by a distribu-

II. OUTLINE OF THE METHOD

points will also be discussed. tion functionf(p, 6). Provided the latter is known at “time”
Let us briefly mention some expected differences betweem, the state of the system at “time+ 1 then follows from
transport inp and ¢ directions, respectively. the equations of motion. Contrary to “ordinary” statistical

First a summary of the transport. FOK<K_, transport mechanics, in the dynamical systems based on maps one
barriers inp direction exist in the form of KAM surfaces. introduces discrete “times’v. The evolution in “time” of
Just above the thresholkl., the system exhibits a very com- the distribution function will be represented via the
plicated phase space topology. The multiisland structure ofrobenius-Perron operatf@].
the phase plane causes orbit sticking, which leads to changes For the distribution function, an ensemble of orbits, each
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governed by the standard map, is considered. The thereby K
defined (coarse-grained distribution function should be p=p'+ 5, Sin 2m(0'—p'), (18
smooth and integrable in the limit of an infinite ensemble.
Although in the case of weak chaos, KAM surfaces prevent
orbits from reaching arbitrary values pf it is assumed that
f=1(p,H;v) is defined in the whole phase plane, ).

The local densityn(6;v) is introduced as the average of
f(p,;v) over the action variablg,

0=0'—p’, (19

for the standard map, the Frobenius-Perron operator can be
expressed explicitly as the simple finite displacement opera-

tor
o= | dp .. (1) Ay (K
o U=ex paa ex 5 sin 2w08p . (20
Next, we switch to the Fourier-transform ¢éhandp; we use ) ) - )
the definition In the Fourier representation, the operdtbihas the matrix
elements

"f‘(q,m;y)=f:dpf:deexp[—zm(pm om)1f(p,o;v).

12 (q,m|U|g’,m")= f_xdpf_wdaexp[—27ri(pq+ om)]

Here,g andmas well asg’ andm’ are continuous variables x U exg2#i(pqg’ +6m’)]. (21
since we defing and ¢ on the whole plane.

The Fourier transformation of the density is related to the Using these matrix elements, the evolution of the distri-
g=0 mode of the Fourier-transformation &fp, 8;v), bution function in Fourier space becomes

n(m;v)=f(q=0m;v). (13 ~ = (e .
f(q,m;v)=f dq f dm’(g,m[Ulg",m")

In the statistical theory of transport, the diffusion coefficient o o

is related to the time-de_pend_ent mean-square-displacement xF(q’,m’;v—1). (22)
(MSD). The latter we define via

- It is an important fact of the standard map that the matrix
2 y)=f dee’n(0;v): (14)  elements of the Frobenius-Perron operator can be calculated
- analytically. Using the well-known identity with Bessel

2% tends to((A 0)2> for psoo. functionsJ, (first kind, Ith orde)

A simple calculation leads to

expiz sing)= e''°J(2), 23
) 2 Rizsing)= > €'%3(2) (23
—amz =—47*35(v). (15)
d m=0 one obtains
Thus, only an infinitely small region af(m;») nearm=0 (q m|0|q’ m'y=J (q'K)8(g+m—q’)
' ' m—m’

determines the MSprovidedn(m;v) is an analytic func-

tion]. Obviously, this means that for long times only the v H sm—m'—1). (24

lowest m modes of the distribution function determine the =01, ...
MSD.

It is natural to define theunning diffusion coefficient Although m and m’ are continuous, the difference
Dy=Dy(v) as a time derivative of the displaceméif(v), —m’ remains integer. This reflects the fact, that the
ie., Frobenius-Perron operator is invariant under translation

5 ~ transformation®= 6+n,ne Z.
D0=2w2&: 19 dn(m;») (16) Making use of the explicit forni24), integration oveq’
v 2Jv  dm? - andm’ can be replaced by summation in following way:

The evolution of the distribution function can be calcu- f f dq'dm’ s(q+m—q’) H S(m—m'—1). ..
| =

lated by the action of an evolution operatdr, called the 0£1,...
Frobenius-Perron operator,

~ HE 8/' 57’ .
f(p',0";v)=f(p,0,v—1)=0f(p',0";v—1). (17) T
Because of the explicit inversion formulas Thus, we can write
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_ _ We, therefore, expand the Bessel functions in the form
flampy= > 3(@Kf(@=g+mm=m
1=0,%1,... 1 X2

~1;v—1). (25 In(X)=x"

— +0(xY|.
2'T(n+1) 2""°I'(n+2) )

The solution of the initial value problem in Fourier space (30

follows as It is easy to see that the main contribution in the s(29)

originates from the term with
ki ,m;vzfd ’fdm’ .mU”q",m")f(q’,m’;0).
(q,m;»)= | dqg (g,m|U"lg",m")*(q )(26) K= ko= =k, 1=k, =0, 31

- . . In the caseK =0 this is the only nonvanishing term. It is of
In a similar manner as above, one can write the Founer-Zeroth order irK: terms with anv other choice & contain
transformation of the density as ; ' y !
higher orders oK.
Thus, in zeroth order we have

ﬁ(m;v)=f dq’f dm'(q=0m|U”q’,m")f(q’,m’;0).

27) (q,mPU"q",m")=1 (32)
One can show for g'=vm, and m’=m. The solution of the equation of
motion (27) becomes
(0m[U’lg",m") - -
n(m;v)=f(rym,m;0). (33
:J da- - f dm,_; This is exactly what we get in a corresponding continuous-
~ ~ time system foK =0 (see Appendix A Thus, the regime at
X(0,m[U[qy,my)---(q,-1,m, 4|U[q",m"). K— 0 is superdiffusive with respect to angular transport, and
(28) the diffusion coefficient is
Introducing new summation indicds=m,—m,i=1, ... v Dy=const v, (34)

—1 and keeping in mind an integration owgr andm’, the

propagator finally becomes where const depends on the initial distributipsee Eq.

(A9)]. This is obvious from the physical point of view. At

(q,m||50”|q’,m’> K =0 the "“orbits” do not change their momengaat all. So
the rate of transport depends only on how the orbits are ini-
tially distributed inp.

:kl,kz,Z. oy Tk (MK)Jpe i [ (2M+ k1 )K] It should be emphasized that the predicted valye= 2
Y (for K<K_) holds for both cases A and B.
X J ok [(vmEky kot 4K, )K]
IV. ASYMPTOTIC ANALYSIS IN THE LIMIT Ko

X St ke, -mOqr,vm g+t -k, o (29) FOR CASE A

where thek;,i=0,...,v, are integers withky=0, K, Here, our aim is to find a diffusion coefficient in the limit

=m’'—m. . _ . K —oo. Given the solutiom(m;»), we have to differentiate
If we do n(_)t specifyq’ and m’,_l.e., the m_atrlx ele_ment, it twice atm=0. As was already mentioned, the behavior of

then each stringry, . . . k, determines to which matrix ele- {m: ) only in a small region near 0 is of interest. Although

ment the corresponding term in the s@@9) contributes. On  \ye consider larg, for any fixedK the limit m—0 can be

the other hand, for a given matrix element the two conditionsapp”ed_ Thus, in the following two assumptions are crucial.

q'=wvm+k;+---+k,_; andk,=m’—m must hold. _ First, we assume a large stochasticity parameter, i.e.,
Equation(29) is an exact result that provides the starting

point for an asymptotic analysis. K>1. (35)
IIl. ASYMPTOTIC ANALYSIS FOR K—0 But second, we can assume sufficiently smalli.e.,
We shall show now how foK <K the transport behavior mK<1. (36)

in @ direction can be obtained from the propagdf$) in the

limit K—0. In Appendix A we present anothésimplen .

derivation based on the solution of the continuous system of A. Lowest order in 1/\K

a kicked rotor that corresponds to the discrete standard map. There are two types of arguments in the Bessel functions
The propagato(29) consists of a product of Bessel func- of the propagatof29): small ones, if they are likemK, and

tions. All the argumentg;K are small in the limitK—0. large ones, if they are likeifh+ j)K, wherei,j are integers.
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Apart from that, we note that for diagonal elements only the 39
terms being proportional tm? give a nontrivial contribution
to the MSD[see Eq.(15)].

For large arguments we use the expansion

2 ™ 1
Jn(x)= o8 X5~ +0 X

2 -

37)

1%
>
We shall expand the propagator in a power series of two 5°
small parametersy1/K and mK, respectively. T ' .
Since we consider the case(#hich has been outlined in 5 k
Se<_:. 1) we can |mmec_1|ately proc_eed with t_he expressions 1 \theory
derived in Sec. Il. Again, the dominant term in the s(8)
is that one corresponding to 0 . T . T . T
10 20 30 40
kj=k,=---=k,_;=k,=0. (39 K
We shall designate it b$,. Expanding the Bessel functions  FIG. 1. Normalized diffusion coefficierl , vs control param-
up to the second order imK, we find eterK for caseA (—x<p<+x). The dots(connected by lines
represent the measurements from numerical simulations while the
Sp=Jo(MK)Jg(2MK) - - - Jo(vmK) solid curve shows the theoretical prediction.
202 202 202
_ 1_1mK 1_22mK 1_V2mK . v—2 V3 m2K2
4 4 4 3 (S+S )=25 ——J(K). (43)
=1
(39

Here the summation formula
Up to the second order this product leads to

v-2 2 3 3
2K2 2,3 m2K?2 42)=1- 22 Y o e
m-K v v r’\m , =l-—-FT5—>73, )
So~1- > i2=1- —+—+—)—. (40) =1 6 2 3 3
4 i=1 6 2 3 4 (44)
In the next step we consider the transition to large “times”was used. Combining witl,, we finally get for the matrix
(the limit v—o should be taken for fixe&), element
V3 m2K2 A V3 m2K2
~—3 2 (42) (q.m[PO"lym,m)=— = (1-2J,(K)——. (49

This contribution belongs to the matrix elemert  We note that forg transport asymptotically the propagator

—0m|0%g’,m’) with g’ = vm; m’ =m. The next terms we has off-diagonal elements, anddannotbe represented in

consider will contain the additional small factak,(K) the form
~1/K. We designate these terms as (q,m||50V|q’,m’)~5(q’—q)a(m’—m), (46)
Sioke=r=ki1=0, ki=1, kiy=—1, as it was in the case for “action” diffusion.
_ The propagatof45) delivers the explicit solution of the
Kiso=---=k,1=0; equation of motion(27),
S*i: k1=---=ki,l=O, ki:_l, ki+l:17 ~ V3 m2K2~
n(m;v)=— 3(1—2J2(K)) 7 f(vm,m;0). (47)
ki+2: .« .. :kyilzo;

_ Now, combining Egs(15) and(16), the running diffusion
fori=12,..,v-2. coefficient can be estimated as

In dominant orderS, can be estimated as
144/ O codk— 2|2
WKCO T3 v

(48)

K? K?
m2K?2 Dy~ — (1-23,(K)) P~ —
S=i(i+2)——3(K), (42) 4 4

and we haves_;=S;. Since all these terms contribute to the  In case A thed transport is superdiffusive and the running
same matrix element, we can add them together, with thdiffusion coefficient is proportional te?.
result Figure 1 shows a comparison of the analytical prediction
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with numerical simulations. Clearly, the oscillations wkh  sion that divergence should take place for mpsbbably for
can be seen iD,/v?. The diffusion coefficient in angle all) values ofK. In transport simulations that is not observed.

variable is related to that in action varialfl® via As far as we deal with a finite number of orbits, there is a
5 finite probability that an arbitrary orbit can be found in one
Dy=Dyr°. (49 of the accelerator mode islands. The probability is propor-

tional to the areas occupied by the latter. In turn, these areas
y(similar to areas of any structures in phase platead to
zero as the stochasticity parameter increases. In order to ob-
serve the corresponding divergences in computer simula-
tions, either a huge number of orbits with random initial
The present analysis does not apply to the regions wititonditions must be taken, or one has to choose s@muite
periodical points. We mention in that respect the so-calledspecifig initial conditions on the islands.
accelerator modes, which play a special role in diffusion To avoid the divergence difficulty, a collision term could
problems. Divergences in tH2(K) dependence can be ob- be added to the Liouville equation, describing a phase flow
served. They are related to “accelerated” islands, consistin@f a continuous-time systef,15] (see Appendix A
of elliptic orbits surrounding an accelerator mode fixed point

In Appendix B we present simple arguments to explain wh
that should be the case.

B. Influence of accelerator mode islands

[3]. df of a2 ¢°f
For a period-1 accel i i gt = (55
period-1 accelerator mode poiiy(6,) [period 1 dt~ at 2 942
means that in a “moduled” map it would be a period-1 fixed
point] we have the condition wherea? characterizes the diffusion process. The latter leads
K to an additional factor exXp-(a%/2)m?) in the propagator
— ——sin2w6,=N, NeZ; (50) (24). As a consequence, the propagator does not lead any-
2 more to matrix elements with rapid time growth rates caused

by accelerator modé&uasijperiodical orbits. After perform-
ing the calculations with diffusion, the limit of vanishing
noise @—0) can be taken.

the starting momenturp, has to be integer, say 0. The ac-
tion p, starting in this point, increases at each step\band

6 grow asv?,
p,=pot vN=vN, (52 V. ASYMPTOTIC ANALYSIS IN THE LIMIT K—oo®
5 FOR CASE B
14
0,=0p+pit---+ pVH? N. (52 We now consider the dynamics with periodicitypni.e.,

—0.5=p<0.5, —©<fh<w. In order to apply the

Therefore, the mean square displacemend idirection in-  Frobenius-Perron  operator formalism, which essentially
creases as?. For the transport exponents one gets in thes&'€eds the explicit inversion of the map, let us introduce
accelerated regions of phase spage=2, u,=4. The rela- B

tion wy=pup+2, discussed in Appendix B, is therefore also [pl:=pmod1, (56)

valid here. Even when only a few orbits are located in theWhere the operation “mod” forcesp to the interval

accelerator .mode island, their contribution to the MSD be—[_0.5’0.5. Now we can introduce the new map
comes dominant ag— .

A linear stability analysis of the accelerator mode islands

K
shows the stability windows p'=p— o sin 20, (57
a
- —1 < On< 53 ’ ’
il S (53 o=0+1p') 59
which has the same angular dynamics as Eijs.and (2)
_ 27N (54) have for —0.5<p<0.5, —<#<o. Modifying the previ-
sin2wé,’ ous calculations, we get for the Fourier representation of

o Frobenius-Perron operator
The reason why the accelerator mode contributions were

not evident in the propagator expansion is the following. The R o
Fourier modes have been calculated to the lowest order Witl{;q,m|U|q’,m’):Jm,m,(q’K)j dp
respect to the small parametét/K . Contributions of accel- o

erator modes are of higher order ifl/K, but contain an Xexp27i{(q'—q—m+m’)p—m’[p]})
additional factorv. That is why they become dominant as
V— 0, !
X S(m—m’—1I). 59
Although the stability windows for the accelerator islands I= 11_[ . ( ) ®9

are very narrow, there exist stable accelerator mode islands
of higher periods. Their existence would lead to the conclu- The function[p] can be written as a Fourier series,
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k+1

[pl=> YV g 27k p. (60)
=1 wk

Using this and the summation formul@3), the one-step
propagatofq,m|U|q’,m’) becomes

a , 2m’
@miOfa’m)= 2 In m(@'K)J| -

1.Ko, oot

X Jy, s(m—m'—1)

T) Tl

P
X 8(q'—gq—m+m’'—k;+2k,—3k;

+...)' (61)

@mp0rigm= 53

102 2
kg, ... 1PREKS, ...

2m,

> J.1<Kq1>Jk;(

v 14
1"k} s, ...

PHYSICAL REVIEW E 64 056205

where the summation indicés are integers. Next, we mul-
tiply the propagatow times to obtain the/-step propagator

(q,.m[P0"q’,m")

:f dql . f di71

X<O’m|0|ql!ml>' : '<qV*l’mV*l|0|q,7m,>'
(62)

Again, we have convolutions over all intermediate indices
d:.my, ...,0,-1,Mm, ;1. TO be more specific, introducing
[t=m-m;,1°=m;—m,, ..., and using upper indices
1,2, ... p to distinguish the contributions from the various
factors, one finds explicitly

2m; 2my 2m;
A R e e A

2m,
X Ji2(Kdz)d| —— 3| —

2m

o2

2m,
1

XJW(va)ka( )Jkg( >

where

n
qn=i§1 (114K — 2K, + 3K, — - - ),

n
m,=m— >, I,
=

n=1,... . (64)

We consider now the limiK—«. We start with the ze-

roth order termgin \1/K) in a power series expansion of the
propagator. The lowest order follows from the “trivial”

choice of all coefficients

I'=ki=0; i=12,...p j=12,.... (69
Then we getg,=0, my,=m, for all n (the dominant matrix

element is that witlg’ =0, m"=m), and

14 2mV
Je| 37|+ Oar.q,m m, (63)
|
2m 2m 2m
*Jo| 7770l 7)ol 3
(66)
Expanding the Bessel functions,
m2
Jo(m)=1- -, (67

we get for each row

2m\ [2m)| [2m 1 2
— i ... ~1—m? 1 m2
JO( 1 Jo( > )Jo( 3 ) 1-m i=§li2 1 6 m-<.

(68)

In this way, the propagator becomes, in zeroth order,

2 v

A A r
A A ~ v ! '\ ~~ o m2
(q,m|PU”|q’,m’>~(0,m|U”|0,m) <q’m|PU |q M > 1 6 m
2m\ _ [2m\ (2m w
~Jo = Jo 7\]0 = ml—?m v, (69
<3 2m 3 2m 3 2m| with g’ =0; m’=m. Note that the main part of the propaga-
Ol 1 /7% 2 /79 3 tor is diagonal. Then the equation of motion has the solution

056205-7



D. LESNIK AND K. H. SPATSCHEK PHYSICAL REVIEW E64 056205

_ ’7T2 _ 3
n(m;v)=(1—€m2v)n(m;0). (70
] theory
Taking the derivative oh(m;») twice with respect tan we " )
get the MSD I il ﬂ ‘
5 J' | iy [‘ wﬂ l ;
22 1 (92?1 1 (71) “ I,\ ] “ ‘T(“:’T[ Jhﬂ Il:! l;lr‘
e —— =— . C A i : 7 kl. { i i of ik -
L R PO R R M
{' P Pl ‘,} gt e e
(We have omitted a constant term, corresponding to the ini- i i | i
tial distribution. 141
Next we consider the first nontrivial choice of coeffi-
cients. Let
=0, ki=1, Ki=-1, K*'?=0. (72 ' * * ®

Note that for this choicg;=1; gi.1=0. In the correspond-
ing contributions to the sur63) (we designate it bys,;) all
but three Bessel functions contributi@ lowest order with
the factor 1. The three principal factors are that containin
ki, k3, andq;. From here it follows

FIG. 2. Diffusion coefficienD , vs control parametef for case
B (—0.5=p<+0.5). The dotgconnected by lingsrepresent the
measurements from numerical simulations while the solid curve
%hows the theoretical prediction.

action-density profilg¢ ng(p) =(f(p,0))4,(d/dt)ng;=0]. p;
is just a random number, distributed in the interval

The further procedure is analogous to that in the previou§—0-5,0.9 . Let ng have the first and second momefis

S1~Jo(K)J1(2m)J_1(2m)= — Jo(K)m?. (73

Sec. IV. For allS, we get the same result, i.65,. Summing =0 and o, respectively. Providec is distributed uni-
all the termsS; (remember that all of them belong to the formly, then the second momentd§'=1; .
same matrix element with’ =0, m’=m), we get A displacement of a given orbit at timeis
v—2 v
> (S+S_)~2vS;~ —2Jo(K)m?v. (74) AO,=0,—0,=2 pi~0,. (79)
=1 =1

This is the first order term in the expansion of the propagaaccording to the central limit theorer, should be distrib-
tor. Combining it with the zeroth order term, we can write a ted as

more precise equation of motion,

2 1 0’
ﬁ(m;u)~<1—%mzv—zJo(K)mzu)ﬁ(m;O), (75) P(0y)=avﬂeXp( —§>, (80)

14

from which (as v—¢) where o, = o-\/v. From this distribution function the MSD

1 1 can be easily obtained as
32= 1—2+?J0(K) v, (76) .
2";=J 6°P(6,)d6,=c?v. (81)
825 i o
Dy=2m?——=—+2Jy(K) (77
v 6 For a uniform p distribution (approached in the limiK

follows. Expandingly(K) for large arguments leads to —) the MSD becomes

A 8 T 21
- — i Se=—5v. (82
Dy 6+\/7TK cos(K 4). (78) 712

In Fig. 2 we compare this analytical result with numerical So, we have a pure diffusive process in agreement with the

simulations. The agreement is excellent. previous formula. In general, the diffusion rate depends on
We conclude this section by some heuristic argumentthe p distribution.
why for the (in p) modulated map diffusion ir¥ should Comparing Eq(81) with Eg. (76) we conclude that the

occur. We base the consideration on the assumption that feecond moment of the stationary distributiongy(p), i.e., the
largeK anyp; can be treated as an arbitrary functiongof ;. MSD of action, is an in fact slightly oscillating function of
In other words, we assume the existence of a stationari: o= 15+ (1/72)Jo(K).
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Figure 3 shows that in case A the accelerator modes have the
same influences on botl, and p transport. On the other

K, _ o,
1 \ i ri q{w\p hand, in case B no divergences due to accelerator modes
o ﬂ_ l ,\h“h, lﬂ-!-a o occur.
] !
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o APPENDIX A: SUPERDIFFUSION FOR K=0

{
0 - -—-—u—'j

J ' ' ' T ' J Let us consider the continuous Hamiltonian system for the

0 ' 2 4 6 8 .
K “kicked rotator”

FIG. 3. Exponentgt, and u, vs K for caseA (—e<p<+x).
Note that2 ,~»*¢ and 2 ,~v*r. The dots(connected by lings
represent the measurements from numerical simulations.

p> K
H(p,0;t)= —+ —= cos2m0>, S(t—v). (Al)
2 AP v

The coordinatep(t) and é(t) coincide atT=»—0 with p,
VI. SUMMARY AND DISCUSSION and 6, used in the main text. Here, stands for the iterated

In this paper we have investigated the angular transport iffM€s in the standard map. _
a nonperiodic Chirikov-Taylor Map. The results for the ac- N the absence of perturbatioK & 0) the continuous sys-

tion transport, i.e., diffusive behavior in the limit of large tem is trivial to integrate. The kinetic equation for the distri-

stochasticity parameter and transport barriers fok  Pution function becomes

<K,, are well-known. In the case of angular transport we of pr
have superdiffusive behavior fé&¢— 0. The transport prop- 4 p—=
erties for largeK (K—) depend on the boundary condi- at a0
tions on the action variablp. For an unrestrictegh region ) ) _
(case A, the transport is superdiffusive with a transport ex-'" Fourier space, the corresponding equation
ponentu,=3 andD ;= VZDp. This theoretically predicted ~ ~

behavior is in complete agreement with numerical simula- if_mﬂ:

tions, as shown in Fig. 3. On the other hand, for a peripdic ot aq

behavior, thed transport becomes diffusive, and the diffu-

sion coefficient has been derived. Again, as shown in Fig. 4has the solution

the agreement with numerical simulations is excellent. Thus

all analytical predictions are confirmed by numerical simula- f(g,m;t)=F(m,mt+q), (A4)
tions. Figures 3 and 4 also contain the resultspfdiffusion.

0. (A2)

(A3)

where F is an arbitrary function that can be expressed

2,5+ through the initial distribution,
T(a,m;0):=Fo(q,m=F(m,q). (A5)
Thus,
:- ~ ~
£ f(q,m;t)=To(q+mtm), (A6)
c
§. and for the density profile we obtain
[
n(m;t)=f(q=0m;t)=T,(mt,m). (A7)
Now Eq. (15) can be applied to estimafg?. Leaving
only the dominant term in the large-time limit, it becomes
K 75 ’ ’
1 o%fo(q’,m")
2 = 0 2_ 2
FIG. 4. Same as Fig. 3 but for caBg —0.5<p< +0.5). In the 2o 472 9q'2 q/zot constt®.  (A8)
latter case, obviously,=0. m’=0
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The first derivative o3 with respect to time gives the run- Ab=0"—6=p'. (B7)
ning diffusion coefficien{16), i.e.,

When an “orbit” starts withdy=0, thenn(6,;1)=s(6,) is

75 ’ ’ L . . .
_ _(9 fo(q’,m’) t=const t (A9) nothing else but the probability for this “orbit” to have the
0 9q'2 q'=0 ' coordinated, at timev= 1. If during v steps the “orbit” had
m’=0 successive momentay ,p,, . ..,p,, then its actual coordi-

The regime is superdiffusive with the diffusion exponent.nate IS0, =Py po+ - - +p, . The amplitude of this process

_5 is s(p1)s(p2—p1)- - -s(p,—pP,—1). Integrating over all in-
Ko< termediate states, we get the probability for the orbit to have

the coordinate? after v iterations,
APPENDIX B: RELATION BETWEEN ANGLE

AND ACTION DIFFUSION

Let us start with the assumption that the transporpin P 0)=f f dpy---dp,-1S(py)
direction is diffusive. Then we introdua® p;v) as the den-
sity profile at “time” v. We designats(p’ —p) as the tran- X8(P2=P1)- - -S(Py=Py-1), (B8)

sition probability, i.e., the probability that a “orbit” with
momentunp after one iteration will have momentupi. In ~ Where
an ideal diffusive process(p) would be a Gaussian. Actu-

ally, not the shape but the width sfp) affects the dynam- p1tp2t---+p, =6 (B9)
ics. Although it is not exactly the case for the standard map,
for the sake of simplicity we use must hold.
After Fourier transform
1 20 2 o~ 2 22
s(p)= e P s(g)=e Y. (BY) ~ - ~
N27o P.(a)=s(q)s(2q)- - -s(vq). (B10)

Here o2 is an effective one-step mean square displaceme
of p. From the standard map one can see that\(Ap)?

= [((K?/47?)sin(0)>)~K/m\8. The stickiness property

leads to smallperiodica) deviations from the linear depen-

rgubstitutingg(q) from Eq. (B1) and using the summation
formula

v 3 2 3
denceo(K)~K. Having a density profila(p;») at “time” Ly v v v
v, after one iteration it becomes .21 ! 3 * 2 * 6 3 as v—, (B1D
n(p;v+ 1)=j dp'n(p’;v)s(p—p’), (B2)  we finally get
. . 3
or in Fourier space I~3,,(q)=ex;{ _2772%02(42) =exq—2772cr,2,q2),
n(g;»+1)=n(g;»)s(q). (B3) (B12)

Starting with an initial distributiom(p;0)= 6(p), we get

J WITE where o2=(1%/3)0?. Here P,(q) can be interpreted as a
after v iterations

Fourier transform of the angular density profile. Using Egs.
(15 and (16), the MSD and the diffusion coefficient at

(g =[3(q) " =e 2770, B time” b are

Thus for action diffusion, using Eq15), the MSD is ,
1 9.

3
14
2_ 2 = — —P =—d? B13
Ep—yo' , (B5) 20 A2 &qz Q) o 3 g ( )
as was expected for diffusive regime. From here the action
diffusion coefficient D,=27%v%0?, (B14)
— 2 2
Dp=2m"c (B6) respectively. Comparing EqB6) with Eq. (B14), we con-
follows. clude that
We now interpret this formula in the following way. )
Knowing the diffusion coefficienD,, one can estimate the Dy=vD,. (B19

effective p displacementr. The relation between the trans-
ports inp and in & will be estimated from the second equa- The relationu,= u,+2 for the transport exponents was al-
tion of the standard map, ready found by Benkaddet al.[12].
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